
Tutorial 7 2022.11.16

7.1 Supplementary problems in Assignment 9

Problem 7.1 Let D be the parallelogram formed by the lines x+ y = 1, x+ y = 3, y = 2x− 3, y = 2x+ 2.
Evaluate the line integral ∮

C
dx+ 3xydy

where C is the boundary of D oriented in anticlockwise direction. Suggestion: Try Green’s theorem and then
apply change of variables formula.
Problem 7.2 Find a potential for the vector field

−y

x2 + y2
i+

x

x2 + y2
j,

in the region obtained by deleting the line (x, 0), x ≤ 0, from R2.
Problem 7.3 Let F = M i+N j be a smooth vector field which is defined in R2 except at the origin. Suppose
that it satisfies the component test My = Nx. Show that for any simple closed curve γ enclosing the origin and
oriented in positive direction, one has∮

γ
Mdx+Ndy = ε

∫ 2π

0
[−M(ε cos θ, ε sin θ) sin θ +N(ε cos θ, ε sin θ) cos θ]dθ,

for all sufficiently small ε. What happens when γ does not enclose the origin?

7.2 Area formula via Green’s theorem

Proposition 7.1

♠

Let D ⊂ R2 be a domain bounded by the curve γ. Then

|D| =
∫∫

D
1dxdy =

∮
γ
xdy =

∮
γ
−ydx =

∮
γ
αxdy − (1− α)ydx

7.3 Discrete vector calculus

In the following we give a discrete version of vector calculus, the recent topic of this course. The discrete
version will help us understand the differential forms better. The content of this tutorial is inspired by Lecture
33 of Math 22a Harvard College.

7.3.1 Discrete forms

Let M be any set (You could pick your favorite finite set). Let Mk = M ×M × · · · ×M be the direct
product of k copies of M .

Definition 7.1
A k-form α on M is a function α : Mk+1 → R satisfying

α (u1, . . . , ui, ui+1, · · · , uk+1) = −α (u1, . . . , ui+1, ui, · · · , uk+1) .



7.3 Discrete vector calculus

♣for ui ∈ M, i = 1, · · · , k + 1 The space of k-form on M is denoted by Ωk(M)

We have
α (u1, · · · , uk+1) = 0 if ui = uj

and
α (u1, . . . , ui, · · · , uj , · · · , uk+1) = −α (u1, . . . , uj , · · · , ui, · · · , uk+1) .

Example 7.1
1. A zero-form is just a function on M .
2. A one-form α is a function over M × M → R satisfying α(u, v) = −α(v, u). This is the analogy of

vector fields.
From a k-form α we could construct a k + 1-form.

Definition 7.2

♣

The exterior derivative d : Ωk(M) → Ωk+1(M) is the map defined as

dαk (u1, . . . , uk+2)

= αk (u1, · · · , uk+1)− αk (u1, · · · , uk, uk+2)

+ αk (u1, · · · , uk−1, uk+1, uk+2) + · · ·

=

k+2∑
i=1

(−1)k+2−iαk (u1, · · · , ui−1, ûi, ui+1, · · · , uk+2)

where αk ∈ Ωk(M) is a k-form and u1, u2, · · · , uk+2 ∈ M . By a hat ûi on ui we exclude the i-th
argument ui.

Example 7.2
1. Let α0 be a zero-form, so it is a function on M . Then

dα0(u, v) = α0(u)− α0(v)

d : Ω0(v) → Ω1(v)

Function gradient−→ Vector field.

2. Let α1 be a one-form, so it is a function on M ×M , then
dα1(u, v, w) = α1(u, v)− α1(u,w) + α2(v, w)

d : Ω1(v) → Ω2(v)

Vector field curl−→ Vector field.
3. Likewise, the differential of a 2-form is an analogy of taking divergence of a vector field if valued on a

tetrahedron (i.e. 4 points).

Proposition 7.2 (Component test)

♠d2 = 0.

Proof Let α0 be a zero form. Then d(dα0)(u, v, w) = dα0(u, v) − dα0(u,w) + dα0(v, w) = (α0(u) −
α0(v))− (α0(u)− α0(w)) + (α0(u)− α0(w)).

And you can work out the proof for general cases for any k-form.
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Figure 7.1: M = {x, y, z, w}

Remark This is the analogy of the following
1. The curl of the gradient of any scalar field φ is always the zero vector field

∇× (∇φ) = 0

2. The divergence of the curl of any vector field (in three dimensions) is equal to zero:

∇ · (∇× F) = 0

Pictorially, we could view zero-forms as functions on vertices, one-forms as functions on directed edges,
2-forms as functions on directed triangle faces, 3-forms as functions on directed tetrahedrons, and k-forms as
functions on directed k-dimensional simplex. As in figure 7.1, the form on a tetrahedron serves as an analogy
of the vector calculus in R3.

7.3.2 Line integrals and Poincaré’s Lemma

Definition 7.3

♣

A curve of M is an element of
∐∞

k=1M
k. If c ∈

∐∞
k=1M

k then we can write it as c = (u1, u2, · · · , um)

for ui ∈ M, i = 1, 2, · · · ,m. The curve is regular if ∀i, j, ui ̸= uj .

Definition 7.4

♣

Let α1 be a one-form on M , define the line integration of α1 along a curve c as∫
c
α1 :=

m−1∑
i=1

α (ui, ui+1)

Definition 7.5

♣

A one-form α1 is called conservative if there is a zero-form α0 such that α1 = dα0. In this case, α0 is
called the potential of α1.

Example 7.3 In the figure 7.1 a function f is defined on M = {x, y, z, w} as f(x) = 3, f(y) = 1, f(z) =

4, f(w) = 2. Then the integration of df along c = (x, y, z, w) is∫
c
df = df(x, y) + df(y, z) + df(z, w) = f(x)− f(y) + f(y)− f(z) + f(z)− f(w) = f(x)− f(w) = 1
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Theorem 7.1 (Fundamental theorem of Line integral)

♡

Let α1 = dα0 be a conservative one-form and c = (u1, u2, · · · , um) be a curve of M , then∫
C
α1 = α0(u1)− α0(um)

Proof Simple exercise left for the readers.
Therefore, the integration of a conservative 1-form does not depend on the choice of the curves connecting

two fixed points.

Proposition 7.3

♠A one-form α1 is conserved ⇐⇒ dα1 = 0

Proof By proposition 7.2, we just need to prove that dα1 = 0 implies α1 = dα0 for some zero form α0. In
fact, let u be any point in M , and define α0(v) := α1(v, u). Then

dα0(u1, u2) = α0(u1)− α0(u2) = α1(u1, u)− α1(u2, u)

Since dα1 = 0, we have dα1(u1, u2, u) = α1(u1, u2)− α1(u1, u) + α1(u2, u). Therefore,

dα0(u1, u2) = α1(u1, u)− α1(u2, u) = α1(u1, u2)

Proposition 7.3 is not a special phenomenon only for 1-form.

Definition 7.6

♣

A k-form αk is closed if dαk = 0.
A k-form αk is exact if αk = dαk−1 for some k − 1-form αk−1.

Theorem 7.2 (Poincaré’s Lemma)

♡A k-form αk is closed if and only if it is exact.

Proof By proposition 7.2, we just need to show that a closed k-form αk is exact. Since αk is closed, it satisfies

dαk (u1, . . . , uk+2)

=
k+2∑
i=1

(−1)k+2−iαk (u1, · · · , ui−1, ûi, ui+1, · · · , uk+2) = 0

For any u ∈ M , we define αk−1(u1, u2, · · · , uk) := αk(u1, u2, · · · , uk, u). Then

dαk−1 (u1, u2, · · · , uk+1)

=

k+1∑
i=1

(−1)k+1−iαk−1 (u1, · · · , ui−1, ûi, ui+1, · · · , uk+1)

=
k+1∑
i=1

(−1)k+1−iαk (u1, · · · , ui−1, ûi, ui+1, · · · , uk+1, u)

= αk (u1, . . . , uk+1)

7.3.3 Integration on domains and Stoke’s theorem

Mimicking the definition of line integral, we could define the integral of an arbitrary k-form αk.
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Definition 7.7

♣

A signed simple domain D is an ordered tuple of points in M with a sign + or −, so we could write it as
D = ±(u1, · · · , um), ui ∈ M . We call m− 1 the dimension of D. We define −D to be ∓(u1, · · · , um).
A domain V is a set consisting of finite many signed simple domains {D1, D2, · · · , Dl}, we also write
V = D1∨D2∨· · ·∨Dl. Here we allow repetitions, i.e., it may happen that Di and Dj represent the same
signed simple domain. We say V is pure of dimension m if Di is of dimension m for all i = 1, · · · , l.

Definition 7.8

♣

If D = (u1, · · · , um) is a signed simple domain, let Fi = (−1)m−i(u1, · · · , ûi, · · · , um). The signed
simple domains Fi are called the facet of D.
The boundary ∂D of a D is defined as

∂D := F1 ∨ F2 ∨ · · · ∨ Fm.

The boundary of a domain V is the disjoint union of the boundary of the signed simple domains in V .
By ’disjoint’ it means still we allow repetitions, i.e., if a signed simple domain D lies in the boundaries
of both D1 and D2 of V , then we list D twice in ∂V .

Definition 7.9

♣

The integration of a k-form αk over a signed simple domain D = ±(u1, · · · , um) is∫
D
αk = ±

∑
1⩽s1<s2<···<sk+1⩽m

αk

(
us1 , . . . , usk+1

)
The integration of a k-form αk over a domain V = D1 ∨D2 ∨ · · · ∨Dl is∫

V
αk =

l∑
i=1

∫
Di

αk

Example 7.4 The notation for a curve c = (u1, · · · , um) of M in definition 7.3 could also be written as
c = (u1, u2)∨ (u2, u3)∨ · · · ∨ (um−1, um), and the line integration for a one-form α1 over c is the same as the
integration of α1 over the domain (u1, u2) ∨ (u2, u3) ∨ · · · ∨ (um−1, um).

Theorem 7.3 (Stokes’ theorem)

♡

Let αk be a k-form and V be a domain which is pure of dimension k + 1, then∫
V
dαk =

∫
∂V

αk

Proof We may assume V = D = (u1, · · · , uk+2) is a signed simple domain of dimension k + 1.
According to the definition
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7.3 Discrete vector calculus

∫
D
dαk =

∑
1⩽s1<s2<···<sk+2⩽k+2

dαk

(
us1 , . . . , usk+2

)
= dαk(u1, · · · , uk+2)

=
k+2∑
i=1

(−1)k+2−iαk (u1, · · · , ui−1, ûi, ui+1, · · · , uk+2)

=
k+2∑
i=1

(−1)k+2−i

∫
(u1,··· ,ui−1,ûi,ui+1,··· ,uk+2)

αk

=

k+2∑
i=1

∫
Fi

αk

=

∫
F1∨···∨Fk+2

αk

=

∫
∂D

αk
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